Running at Altitude: the 100-metre Dash
 Pietro Enrico di Prampero, University of Udine, Italy

Theoretical 100 m performance times of a top athlete at Mexico City, Alto Irpavi (Bolivia) (2,250 and $3,340 \mathrm{~m}$ a.s.l.) and in a science fiction scenario "in vacuo" are estimated as follows. At the onset of the run: i) the velocity (v) increases exponentially with time; hence ii) the forward acceleration (a_{f}) decreases linearly with v , iii) its time constant (τ) being the ratio between $\mathrm{v}_{\text {max }}\left(\right.$ for $\left.\mathrm{a}_{\mathrm{f}}=0\right)$ and $\mathrm{a}_{\text {fmax }}(f$ for $\mathrm{v}=0)$. The overall forward force per unit of mass $\left(\mathrm{F}_{\mathrm{tot}}\right)$, as given by the sum of a_{f} and of the air resistance ($\mathrm{F}_{\mathrm{a}}=\mathrm{k} \cdot \mathrm{v}^{2}$, where the constant $\mathrm{k} \approx 0.0037$ $\mathrm{J} \cdot \mathrm{s}^{2} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~m}^{-3}$) was obtained from the actual relationship between the instantaneous values of a_{f} and v during Usain Bolt's extant world record (see Figure). Since the decrease of k at altitude (due to the reduced barometric pressure, and hence air density) is known, assuming that $\mathrm{F}_{\text {tot }}$ is unchanged, the relationships between a_{f} and v at the altitudes in question were obtained subtracting the appropriate F_{a} values from $\mathrm{F}_{\text {tot }}$. The 100 m performance times, as obtained from the resulting $\mathrm{V}_{\max }$ and τ values in the three conditions considered amounted to $9.515,9.474$ and 9.114 s , as compared to 9.612 s at sea level. Performance times were also estimated from the relationship between overall mechanical power and speed, assuming that at the end of the run (when $a_{f}=0$, and $v=v_{\text {max }}$) the mechanical power is unchanged regardless of altitude, thus leading to increased $v_{\max }$ values because of the reduced power dissipated against the air resistance. Since $\mathrm{a}_{\text {fmax }}$ (for $v=0$), which is obviously independent of altitude, is know (see Figure), the so obtained $v_{\text {max }}$ values, allowed us to estimate the appropriate time constants (τ) and the corresponding performance times which amounted to 9.474, 9.410 and 8.981 s . In conclusion, the rather small difference ($\approx 0.3 \%$) between the estimated 100 m time (9.61 s) at sea level and the actual 100 m world record by Usain Bolt (9.58 s) supports the validity of the above approach. Hence, neglecting science fiction scenarios, the 100 m performances times of a top athlete at the two altitudes considered can be reasonably expected to be shorter by 1.0 to 1.4 \% at Mexico City and 1.4 to 2.1 \% at Alto Irpavi, the slight differences (0.43 to 1.46%) between the two set data obtained from the two different estimates of τ reported above being likely due to the uncertainties in the underlying estimates of k and/or of the mechanical power.

Forward acceleration ($\mathrm{af}, \mathrm{m} \cdot \mathrm{s}^{-2}$, blue) and overall forward force per unit body mass ($\mathrm{F}_{\text {tot }}$, $\mathrm{N} \cdot \mathrm{kg}^{-1}, \mathrm{red}$) as a function of the speed ($\mathrm{m} \cdot \mathrm{s}^{-1}$) during Usain Bolt's world record performance.

